
Journal of Alloys and Compounds, 195 (1993) 579-582 
JALCOM 7532 

579 

WEAK LINK EFFECTS IN Ti le  SURFACE IMPEDANCE OF CUPRATE 
SUPERCONDUCTORS 

J. 1 lalbri t ter  
Kerntbrschungszentrum Karlsruhe, lnstitut ftir Materialforschung I, 
Postfach 3640, 7500 Karlsruhe, Germany 

A I~STRACT 

The leading indicator for quality in rf superconductivity are: the weak link (Wl,) density and their 
quality which is given by critical current j~j(T-~ O,B ~O), Josephson penetration depth £j~l /x / jc j  
and normal (leakage) tunnel current jbl. The jcj(T,B)- and Jbl(T)-values explain penetretion depth 
Ares and surface resistance Rres = ((~)lao)2Xd 3 jbl/2 quantitatively and in temperature ~(a + Tn); n ~ 1, 
and ~(b+Hn);  n ~  1 H >I l c l j  in field dependence. Here l lc l j i s  the field where Josephson fluxons 
penetrate  into WL's enhancing the penetration depth and thus the rf residual losses. For thinner 
films t < ~.j, Rres is enhanced further by hj/t and field dependencies are changed by enlarged pene- 
tration depths ~ . Z j  ----- ~j2/2t, by flux focusing and by demagnetization. 

1. INTROI)UCTION TO BU1,K Wl. SUR- 
FACE IMPEDANCE 
Experimentally,  cuprate superconductors 

show penetration depths h(T) and surface re- 
sistances R(T), which because of their magni- 
tude (101 - 106 above BCS [1,2] ) and tempera- 
ture and field dependencies (~ (T/T) m, m~-1, 
T<T~2)[2]  well above expectations, have 
been related to extrinsic properties. In [2I evi- 
dence was presented that all "residual rf ef- 
fects" in: magnitude-, frequency-, tempera- 
ture-, dc resistance-, and field dependence can 
be related to "weak links" (WIJ Here WL 
stands for planar defects (Fig. l) being weakly 
superconducting only, i. e., being crossed by a 
reduced Josephson current  Jcz where the re- 
duction is compensated by a normal, leakage 
current  Jbl The weak Josephson coupling 
yields a long Josephson penetration depth 
)~d > 1 pm causing the destruction of rf shield- 
ing deep into the superconductor and (tissipa- 
tion described in a l{SJ-model [3]. In lowest or- 
der approximation the intrinsic ( I ) and weak 
link (J) bulk impedances in series yield 

h ff---- (1--P)~l + p k j  1 1 

l¢.ff = (1 - p) 1{ 1 ~- tal(z and 
with p =  2 h 1 / a  as areal ratio for ~l "-~ being 
the mean grain size [3]. The seize a is most 
easily obtained by scanning tunnel microscopy 
(STM) showing[41 for intragrain WL's a -- 2 2 
pm (epitaxial film), a ~ l0 pm (single crystal) 

and for intergrain WL's a - 1 - 50 lam. The ac- 
cepted properties for inter- and intragrain 
WL's are summarized in Table 1. 

As discussed by the author [5], at the banks 
of the cuprate the energy gap of localized 
states As(x) is reduced and thus the supercur- 
rent (JcJ) is reduced, too, whereas a large nor- 
mal (leakage) current  (Jbl) is carried [6] via lo- 
calized states with A s=0  in the midth of the 
barrier .  For intragrain planar defects, as e. g., 
small angle grain boundaries [3 - 6], the local- 
ized states may be caused by O-disorder in the 
chains, e. g., due to strain. As obvious by this 
sketch, the WL consists of nanoshorts ( 0  ~ 1 
nm2, j~(0) :> 5-107A/cm 2) in parallel and 
their density makes up the mean Josephson 
currentjc J (0) -< l04- 107 A/cm2[5, 6]. 

In [21 the physics of the rf residual surface 
impedance is worked out in detail. For" exam- 
pie, it is shown that j ~  ¢( 1/Rbn 2 holds with Rbn 
(~cm 2) as WL grain boundary resistance thus 
yielding as Josephson penetration depth 

Xj(T, H) ~ 1 X/jc J (T, H ) ~ Rbn (1.2) 

2 3 a/2Rbl R2 (1.3) R vI' t I )  ) ~j(T, tl) ¢, 
j .  _ ,  -~ (a)  P 0  bn 

and weak link surface resistance with Rbi (t) 
cm 2) the leakage current grain boundary resis- 
tance 12,3]. An exponential exp(-As/kT) 
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Fig. 1: Sketch of a small part of a planar 
intergrain (intra-) defect with localized states 
(o) in the insulator which mediate a tunnel 
current  s imulat ing nanoshorts [5, 6[. 

(As/kT<-2) or a linear T increase of .~j(T) and 
Rj(T) can be related to the temperature depen- 
dencies of RbI(T) or j~j(T}. But the field depen- 
dence is more informative which is due to the 
small {2] Hcl J ~ h I /hj  l-]cl where Josephson 
fluxons enter fast not hindered by a surface 
barrier. In rf fields the Josephson fluxon do not 
show flux flow or flux creep to speak off. Thus, 
e g., the frequency, field or orientation depen- 
dence of the fluxon surface impedance is dis- 
tinctively different to Abrikosov fluxons [2, 7]. 
Est imates for best films or crystals yield 
p = 0.3 as areal ratio tbr crystal (island) size of 
llam deduced from STM [4].Then for o~<o)j 
[Josephson plasma frequency) 

R ((J)~- 1 2 -  12 mOtf/0.1Ttlz) 2- (1.4) 
r ~ . n  

is obtained as lower limit. To date, measured 
R(T_<0.gToco<~a)-values are larger than 
R[(T). Weak links ,seem to dominate with 
R(T-<0.9T c) -~ Rr,~s ~ },j3(T)hI(T)/Rbl(T) as 
temperature dependence, and as field depen- 
dence H2 up to He1,} where a linear increase 
takes over [1,21. 

2. Tt i lN FILM SLJRFACE IMPEI)ANCE 

The above equation~ hold for bulk cuprates, i. 
e., thickness t ~ h, or hj. Most "good films" 
produced to date are' with t~  0.1 - 0.2 pm compa- 
rable or thinner than ,\I and hj. Neglecting 
transmission one obtains with the bulk impen- 
dance Z an effective impedance Zeffgivcn for h 
>> t by the complex conductivities ol and oji of 
several types "i" of weak or strong links 

(2.1) 

Below 0,9Tc the intrinsic losses can be neglect- 
ed and for (o < (~j--~ 10 THz [3] 

4 2 
hj h I / a i P~l (2.2) 

R f f . t  = (~)po) 2 "b ~ - 
z-- 1 +(co~.)2 

1 

holds. Here, ti = "h]2ejicjRibl describes the 
leakage current losses in a RSJ model [3].The 
reactance is given by 

h2/ai  ~I (2.3) 
X e f f t -  COlaoh I ( 1 +  

1 + (o)~.) 2 
1 

Comparing these thin film results with Eq. 
(1.1) the WL enhancement hj/t is obvious. For 
rf current carrying thin strips [8] the thin film 
impendance is given by 

zstrip -- Zcoth t/2h (2.4) 
elf 

corresponding to a substitution of t ("one side") 
by t/2 ("two sides") in Eqs. (2.1) - (2.3). In end- 
plate measurements in Eq. (2.1) the "transmis- 
sion" has to be added being described best by 
the impedance Zsub at the backside of the film 

coth t/h + Z/Z sub (2.5) 
zend = Z 

eft 1 + Z/Zsu b coth t/h 

For normal conducting YBCO films t ~ h  
holds and thus WL corrections of(2.5) are neg- 
ligible. In the superconducting state t --~hl and 
t ~  hj  yield enhanced transmission via WL's 
proportional to (hj/t) 2. The interfering trans- 
mission components given by (2.5) with hi and 
hj make endplate measurements difficult to 
analyze in the superconducting state. At the 
end a third thin film impedance should be 
mentioned for the fihn perturbing a uniform It 
- rffield 

Z ~r = Z tanh + 
-eft , 2hcosh 2 t/2h 

The-latter impedance Zeffper ~Z-t2h ( t~h)  is 
smaller than the bulk impedance Z whereas Z 
ett end and Z et~trip a re  larger than the bulk im- 
pedance. For thin films the response to mag- 
netic fields is enhanced as compared to the 
bulk 11,2,71. This is due to the reduced shield- 
ing of magnetic fields as described in Eq. (2.3). 
This lowers He1J [1], but also: field enhance- 
ments, flux focusing and demagnetization [9] 
have to be taken into account, aside of frozen- 
in flux. But like in the bulk, these effects can 

'be described in the phase diagram depicted in 
Fig. 2. 
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3. COMPAIUSt)N WITtl  E X P E I U M E N T S  
AND DISCUSSION 

In [ l, 2] magni tude ,  t 'requency, t empe ra tu r e  
and observed  field dependencies  of Nb, NbN 
and YBCO surfaces  have successfully descri- 
bed by WL's. I tere ,  some new exper iments  are 
ana lyzed  [7 - 15 I. The  t e m p e r a t u r e  dependence 
of the  Wl,  nmdel [21 has ah 'eady successfully 
expla ined  MT) of epi taxia l  films [10l showing a 
small  gap (2 A/k'l',: <-'2) below To>/2  and a lar 
ge gap (2A/kT~ ~4 .5)  above To/2. Recent de- 
oxygena t ion  and O-o, 'dering exper imen t s  [11] 
show s imi lar  small  gap values in R(T) below 
To/2 and smal le r  Rres-values for a h igher  O 
con ten t  or order.  These  observat ion  are explai- 
ned by Wl?s  because ()-loss and O-diso, 'der re- 
duces Jcd and  e n h a n c e  Jbl of WL's  [5 ]. l n epi taxi- 
al f ihns in t r ag ra in  Wl, 's change X(T) by about  
10 % [ 10] in line with Eq. (2.3) and thus by de- 
oxygena t ion  Wl,'s change MT) by a s imilar  
amount .  In this connect ion it should be men- 
t ioned tha t  in endpla te  m e a s u r e m e n t s  [11] 
WI,'s s imula te  an enhanced  geomet ry  factor 
and ,\ (T) via Eq. (2.5). Despite the small )~d- 
change  l l0 l  Jbl --Jbn-.JeJ can grow drast.ically, 
where  tbr large lea-values, i.e. small Jbl- and 
l{res values,  led(T) c~ jbl(T) depends exponenti-  
ally on T (T<'l '~/2) with 2A/kTc-<2 [5.6/, as 
found for R~s(q') in 11 !1. New infrared measu- 
r e m e n t s  112] al lowed a deduct ion ofa i  and L i of 
S e c t  2: al = 1 pro, I/L 1 = 0.15 Tl tz  and a2 = 
3pro, 1/t2 = 4 . 8 T l t z  tbr j~j = 106 A/cm2. These  
two types of WI, fit nicely to Tahle 1 and to 
S T M - m e a s u r e m e n t s  

In d iscuss ing new Z(tt)-results ,  we start  
with m e a s u r e m e n t s  in dc fields l tdc>ll~t  of 
bulk YBCO 17l The R(Hdc) increase shows 
RII>R± and lla(tt)~ l / ( t t + t l * c l  3) with 
I1¢.13(0)~ 100 Oe. In this mate r ia l  in te rgra in  
weak  l inks exis t  also with I tc l j  ~- l Oe as infer 
red from ESR m e a s u r e m e n t s  [71 both in line 
with Table  1. The pene t ra t ion  of Abrikosov 
f luxons occurs  at  tlcl ~0.1 T. In contras t  to 
mel t  - t ex tured  YBCO showing only some in- 
t e r g r a in  Wl,,  s in te red  YBCO is dominated  by 
i n t e r g r a in  WL with 1tcl J ~ 1 0 e  (Table l I, 
y ie ld ing  large surface res i s tance  and reactan-  
ce increases  [1, 21. Proofs for the flow of Abri.- 
kosov f luxons like 1tc2~100 T or R c~ ~/w are 
found at  h igher  fields tt  -~tt(;2 [121. 
R(Hdc±)>(f tdc  II) and indicat ions of ideal sur- 
faces, like, surface  ba r r i e r  or surface supercon- 
duc t iv i ty  have not yet  been observed in surface 
impedance  exper iments .  This  lack of the sur- 
face b a r r i e r  is in line with the weakened su- 
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Fig. 2: Sketch of the dif ferent  reg imes  of Rre s 
(itrf, .J) caused by fluxon pene t r a t ion  fi)llowed 
by flux creep and flux flow. Flux pene t ra t ion  
occurs for f requencies  below the fluxoid nu- 
cleat ion f requency fn and for fields above t lclJ,  
[IclG, or tfcl 1. Below 104- 106 Hz the surface 
res is tance is domina ted  by hys te res i s  losses. 
l~ tall), with the fu r the r  increas ing  f requency  
leakage cu r ren t  res idual  losses ~ (~2~.d3jb I take 
over• Below tt¢1 and above fn no l i f t  depen- 
dencies in Rres are encounte red  and one is ob- 
serving Rre~ due to leakage cu r ren t s  and Hre s 

1 - 103 Oe. 
perconduct ivi ty  at  such fi-b surfaces [5]. In ad- 
dition to dc fluxons, rf  field f luxons are  genera-  
ted fast tbr Hrf > t t c ld  (Fig. 2). This  is due to 
the facts tha t  WL ending at  a surface yield a 
field en h an cem en t  des t roy ing  any surface bar- 
r ier  and tha t  small  JcJ and large leakage cur- 
rent  of weak l inks ease f luxon nuclea t ion  
(>  1010 sec) [2]. The f luxons en te r  weak  l inks 
and enhance  Xj(H) as described in [2]. The rf  
field fluxons are  piling up at  the surface which 
resul ts  in R (ltrf) > R (tidc). 

In cont ras t  to the scarce expe r imen t s  on 
high qual i ty  bulk YBCO, on ep i t ax ia l  YBCO 
f i lms  more and more deta i led expe r imen t s  [8 - 
15] are reported.  Fi lms with t ~0.1  - 1 lam are  
with ~_I(T), ~_j(T)_>L in the thin .film l imi t  
especially close to To, worked out  in Sec. 2. As 
ment ioned there ,  WL efl'ects are  enhanced  by 
)M/t compared to the bulk. In addit ion,  fields 
perpendicu lar  to the film tt& pene t r a t e  more  
easily because Iq± is enhanced  by demagne-  
t ization and because t tJ-cl-f ields are reduced 
by X± > )L For dc-fields at ftC1G ~-100 Oe Rj 
(H) increases  and at  tic11 ~ 700 - 1000 Oe Rj 
(1|) grows fu r the r  by fluxon pene t ra t ion  into 
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Table 1: Parameters  characterizing weak links and bulk, intrinsic YBCO at T = O assembled in [21 
from experiments. The abbreviations "J" or "G" or "I" are subscripts added as needed for clarity. 
The critical currents jcj/G cited are dosephson critical currents which together with pinning yield 
the actually measured critical current j~. The fluxoids entering at Hclj are Josephson fluxons for 
intergrain weak links turning to a more Abrikosov - like fluxon for the "G" - and 'T' - system. 
Josephson fluxons move as linear array only which yields large activation energies U(T) 
~roportional to the length of the weak links for fluxon motion. 

Weak l ink 

I 

insulator 

intergrain 

abbr .  

I I I I I  I I 

Rbn 
~}cm 2 

I I  

J C  

A / c m 2  

I II 

~.j 
pm 

I Ill II 

r ~  

H c l  
O e  

oo 0 

J _~ 10 ~ ~ 102 ~ 30 ~ 1 

intragrain G - 5 - l0 ~ _> 10 4- 107 -~ 1 

4,108 0.14 intrinsic 

100 

z 1000 

U 
eV 

1-10 

0.01- 1 

? 

the bulk proportional to Rres ¢' o32H. These pro- 
portionalities proof the dominance of WL los- 
ses and rule out flux flow type loss mechanism 
with oc x/o~H. In rf fields, in addition to a small 
HC1j -~ 1 Oe, dependencies proportional to 
HRF 2 are found between 20 and 100 Oe. The 
detailed analysis yields [1,2,8] 

it (O)cj --- 0.1 Tesla, a -~ 1/8 and y ~2. 

By using an areal ratio p = 0.1 (Eq. (l.1)) He3 
reduces to 300 Oe, which fits nicely to the ob- 
served intragrain WL with HclG{0) = 100 Oe, 
like the o- and y-values. With further increa- 
sing rf  field a stronger R(H)- grows is observed 
hint ing to heating or flux penetration ~ 1/(Hrf 
+ HC1G). 

4. CONCLUSION 

With the inter- and intragrain WL proper- 
ties summarized in Table 1, the rf residual los- 
ses and residual penetration depth are explai- 
ned in magnitude [1,2]. In addition, T-[10,11], 
o~-[12], and H-dependencies [7-9,13 - 15] of Z 
proove the existence of the two types of WL's 
classified in Table 1 and yield an estimate of 
their density. Again, this confirms the obser- 
ved rf residual surface impedances quantitati- 
vely and shows that  WL's have to be reduced 
further  to obtain superior material. 
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